
DOI 10.1007/s10898-005-3843-3
Journal of Global Optimization (2006) 35: 367–385 © Springer 2006

A Branch-and-Bound Based Method for Solving
Monotone Optimization Problems∗

X. L. SUN1 and J. L. LI1,2

1Department of Mathematics, Shanghai University, 99 Shangda Road, Baoshan, Shanghai
200444, P. R. China (e-mail: xlsun@staff.shu.edu.cn)
2College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi
530004, P. R. China (e-mail: jianlingli@graduate.shu.edu.cn)

(Accepted 6 October 2005)

Abstract. Monotone optimization problems are an important class of global optimization
problems with various applications. In this paper, we propose a new exact method for mono-
tone optimization problems. The method is of branch-and-bound framework that combines
three basic strategies: partition, convexification and local search. The partition scheme is
used to construct a union of subboxes that covers the boundary of the feasible region.
The convexification outer approximation is then applied to each subbox to obtain an upper
bound of the objective function on the subbox. The performance of the method can be fur-
ther improved by incorporating the method with local search procedure. Illustrative exam-
ples describe how the method works. Computational results for small randomly generated
problems are reported.
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1. Introduction

Consider the following monotone global optimization problem:

(P ) max f (x)

s.t. gi(x)�bi, i =1, . . . ,m,

x ∈X ={x | lj �xj �uj , j =1, . . . , n},

where f and all gi are increasing functions of xj on [lj , uj ] for j =1, . . . , n,
i =1, . . . ,m, functions f and gi are not necessarily convex or separable.

Monotone optimization problems are an important class of global
optimization problems. The idea of monotone optimization problems was
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discussed in [5]. Many real-world applications can be modeled as a mono-
tone optimization problem or its equivalent forms (see [17]). One of the
prominent applications of the monotone optimization arises from the com-
plex reliability network systems (see [16, 19]). The problem is to determine
the reliability levels of each subsystem in order to maximize the overall
reliability:

max f (r1, . . . , rn)

s.t. gi(r1, . . . , rn)�Ci, i =1, . . . ,m,

lj � rj �uj , j =1, . . . , n,

where f represents the overall reliability of the system, gi the ith resource
(cost, weight and volume, etc) consumed, Ci the total amount of ith
resource, lj and uj the lower and upper bounds of the reliability level in
j -th subsystem, 0 < lj <uj < 1. By the very nature of the problem, f and
gi are strictly increasing functions of each rj (see [1, 4]). A typical 5-link
bridge system is shown in Figure 1. The overall reliability function has the
following form: f (r)=r1r2 +q2q3r4 +q1r2r3r4 +r1q2q3r4r5 +q1r2r3q4r5, where
qj =1− rj , j =1, . . . ,5.

We point out that continuous resource allocation problems that have
been extensively studied in the literature (see [6, 9, 10]) can be regarded as
special cases of (P ) with a single separable convex constraint and f being
separable concave.

Although the global optimal solutions to (P ) are located on the boundary
of the feasible region, there may exist multiple local solutions. There-
fore, problem (P ) is of a global optimization problem. The monotone
optimization method proposed by Rubinov et al. [13] was the first specialized
algorithm for (P ) (see also [17, 18]). Recognizing the fact that the objective
function f always achieves the global maximum over a polyblock at one of
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Figure 1. A 5-link Bridge network.
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its extreme points, Rubinov et al. [13] introduced a polyblock approximation
to the feasible region. The extreme point of a polyblock with the maxi-
mum function value can be regarded as an approximate optimal solution.
The polyblock method can find an approximate global optimal solution in
a finite number of iterations. We observe, however, that each extreme point
of a polyblock is formed by n hyper-planes paralleling to n axes. Therefore,
the extreme points of the polyblocks approach the global optimal solution
in a zigzagging way and the polyblock method requires many iterations to
reach an approximate optimal solution. Example 1 in Section 4 of this paper
illustrates this phenomenon.

The convexification method proposed in [12] (see also [11, 15]) is essen-
tially of a polyhedral approximation method. The monotone optimization
(P ) is first converted into a convex maximization problem (or a con-
cave minimization problem) via a variable transformation. Outer polyhedra
are then constructed to approximate the convexified feasible region. Cut-
ting planes are added successively to form refined outer polyhedra. It is
worth pointing out that the outer polyhedra are formed by hyper-planes
tangential to the convexified feasible region. Thus, it can approximate
the feasible region with higher accuracy than the outer polyblock, which
is formed by hyper-planes paralleling to the axes. Comparison numeri-
cal results with polyblock approximation and outer approximation can be
found in [20].

In order to implement the convexification method for high-dimensional
problems, two computational issues have to be considered: (a) the determi-
nation of a suitable convexification parameter that controls the convexity;
(b) the rapid increase of the number of vertices of the outer approximation
polyhedron.

In this paper, we will present a new branch-and-bound method for
(P ). Three basic strategies: partition, convexification and local search
will be incorporated into the branch-and-bound framework in order to
design a more efficient algorithm for monotone optimization problems. The
partition scheme is used to decompose the domain X into a series of sub-
boxes. The union of these subboxes forms a generalized polyblock that cov-
ers the boundary of the feasible region. To obtain a better upper bound on
each subbox, convexification method is used to construct polyhedral outer
approximation, thus enabling more efficient node fathoming and speeding
up the convergence of the branch-and-bound process. A local search pro-
cedure is employed to improve the lower bound of the optimal value. Since
only an approximate solution is needed in the upper bounding procedure,
the number of polyhedral vertices can be limited and controlled. Moreover,
as the domain shrinks during the branch-and-bound process, the convexity
can be achieved with a smaller parameter, thus avoiding the ill-conditional
effect of the convexified problems.
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In Section 2, we introduce some basic concepts and preliminary results
for monotone optimization. A domain partition scheme and a modified
variable convexification transformation are presented in this section. In
Section 3, the main algorithm is described and its convergence is analyzed.
In Section 4, illustrative examples are presented to show the feasibility
and efficiency of the proposed branch-and-bound method. Computational
results are reported in Section 5. Finally, a few concluding remarks are
given in Section 6.

2. Preliminary Results

2.1. partition scheme

Let J ={1,2, . . . , n}, l = (l1, . . . , ln)
T and u= (u1, . . . , un)

T . Let α,β ∈R
n be

such that l �α �β �u. The rectangular determined by α and β is called a
box in R

n.

[α,β]={x |αj �xj �βj , j ∈J }=
∏

j∈J

[αj , βj ].

The semi-closed box [α,β) and (α,β] can be defined similarly. The point α

and β are called the lower bound point and the upper bound point of [α,β],
respectively. For convenience, we define [α,β]=∅ if α ��β.

Consider a subproblem of (P ) by replacing X = [l, u] with a subbox
[α,β]⊆X:

(SP ) max f (x)

s.t. gi(x)�bi, i =1, . . . ,m,

x ∈ [α,β].

Define

G(x)= max
i=1,... ,m

[gi(x)−bi ]. (1)

The boundary of the constraints can then be expressed as � = {x ∈ X |
G(x) = 0}. Let S = {x ∈ X | gi(x) � bi, i = 1, . . . ,m}. Let xb be a point on
the boundary �. By the monotonicity of f and gi ’s, we always have

f (xb)�fS �f (β),

where fS is the global optimal value of (SP ), fS =max{f (x) |x ∈S ∩ [α,β]}.
By the monotonicity of f and gi ’s, there are no better feasible points

than xb in [α, xb) and there are no feasible points in (xb, β]. Therefore, the



BRANCH-AND-BOUND BASED METHOD 371

two boxes [α, xb) and (xb, β] can be removed from [α,β] without missing
any optimal solution of (SP ). The following lemma shows that the set of
the points left in [α,β] after removing [α, xb) and (xb, β] can be partitioned
into at most 2n−2 subboxes.

LEMMA 1. Let α,β, γ ∈ R
n and α � γ � β. Denote A = [α,β], B = [α, γ )

and C = (γ, β]. Then A\(B ∪C) can be partitioned into 2n−2 subboxes.

A\(B ∪C)=
{

n⋃

i=2

(
i−1∏

k=1

[αk, γk]× [γi, βi ]×
n∏

k=i+1

[αk, βk]

)}

⋃
{

n⋃

i=2

(
i−1∏

k=1

[γk, βk]× [αi, γi ]×
n∏

k=i+1

[αk, βk]

)}
. (2)

Proof. We first show that

A\B =
n⋃

i=1

(
i−1∏

k=1

[αk, γk]× [γi, βi ]×
n∏

k=i+1

[αk, βk]

)
. (3)

Let Aj =∏n
i=j+1[αi, βi ] and Bj =∏n

i=j+1[αi, γi). As illustrated in Figure 2,
we have

Aj−1\Bj−1

=
n∏

i=j

[αi, βi ]\
n∏

i=j

[αi, γi)

=
⎧
⎨

⎩([αj , γj ]×
n∏

i=j+1

[αi, βi ])∪ ([γj , βj ]×
n∏

i=j+1

[αi, βi))

⎫
⎬

⎭\
n∏

i=j

[αi, γi)

= ([γj , βj ]×
n∏

i=j+1

[αi, βi ])∪
⎧
⎨

⎩([αj , γj ]×
n∏

i=j+1

[αi, βi ])\
n∏

i=j

[αi, γi)

⎫
⎬

⎭

= ([γj , βj ]×
n∏

i=j+1

[αi, βi ])∪
⎧
⎨

⎩[αj , γj ]× (

n∏

i=j+1

[αi, βi ]\
n∏

i=j+1

[αi, γi))

⎫
⎬

⎭

= ([γj , βj ]×
n∏

i=j+1

[αi, βi ])∪{[αj , γj ]× (Aj\Bj)
}
. (4)

Notice that A = A0, B = B0, An−1 \ Bn−1 = [αn,βn]\[αn, γn) = [γn, βn]. Using
the decomposition (4) recursively for j =1, . . . , n−1, we obtain (3).
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Figure 2. Partition of set A\ (B ∪C).

Notice from (3) that C = (γ, β] is included in the first subbox of the par-
tition of A\B, namely,

C = (γ, β]⊆ C̃ = [γ1, β1]×
n∏

k=2

[αk, βk].

Using the similar arguments as in the proof of (3), we obtain

C̃\C =
n⋃

i=2

(
i−1∏

k=1

[γk, βk]× [αi, γi ]×
n∏

k=i+1

[αk, βk]

)
, (5)

which, combined with (3), gives rise to (2).

Remark 1. In the implementation of the above box partition process, it
may occur βj −αj <η for some j ∈J , where η>0 is a small constant. Let
I ={j ∈J |βj −αj �η}. From computational point of view, it is reasonable
not to further partition [α,β] along j th axis for j ∈I . In such case, we can
partition the set A\(B ∪ C) in terms of the indexes in Q = J \I . In other
words, for j ∈Q, the j th lower bound and j th upper bound of each sub-
box in (2) are fixed to be αj and βj , respectively. The number of subboxes
in (2) is then 2|Q|−2.
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2.2. convexification and outer approximation

Let α, β ∈ R
n with 0 < α < β. Let h(x) be a twice differentiable function

defined on [α,β]. Suppose that h(x) is a strictly increasing function on
[α,β], i.e., ∂h/∂xj >0 for x ∈ [α,β], j ∈J .

Let t (y)= (t1(y1), . . . , tn(yn)) :Rn �→R
n be a one-to-one mapping. Let x =

t (y). Define

ht(y)=h(t (y)). (6)

The domain of ht is:

Y =
n∏

j=1

Yj =
n∏

j=1

t−1
j ([αj , βj ]). (7)

Define

σ =min
{
dT ∇2h(x)d |x ∈ [α,β], ‖d‖2 =1

}
, (8)

µ=min
{

∂h

∂xj

|x ∈ [α,β], j ∈J

}
. (9)

We have the following theorem (see [15]).

THEOREM 1. Assume that h is a twice differentiable and strictly increas-
ing function on [α,β]. Let t be a twice differentiable and strictly monotonic
mapping. If t satisfies the following condition:

t ′′j (yj )

[t ′j (yj )]2
�−σ

µ
for yj ∈Yj = t−1([αj , βj ]), j ∈J, (10)

then ht(y) is a convex function on Y .

Remark 2. There are many mappings which satisfy condition (10). For
example, let

tj (yj )= (1/p) ln(1−q/yj ), (11)

where p > 0 is the parameter that controls the convexity and q is the
parameter that controls length of the interval Yj . It is easy to verify that
the above tj satisfies (10) for sufficient large p >0.

Remark 3. One of the interesting questions arising from Theorem 1 is
whether or not condition (10) still guarantees the convexity of ht for non-
smooth function h. Recently, an affirmative answer was given in [14] for
semismooth functions.
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We are now able to convert the subproblem (SP ) into an equivalent con-
vex maximization (or concave minimization) problem via the variable trans-
formation:

(SPt) max f (t (y))

s.t. gi(t (y))�bi, i =1, . . . ,m,

y ∈ t−1([α,β]).

Let St ={y ∈ t−1([α,β]) |gi(t (y))�bi, i =1, . . . ,m}. By Theorem 1, if f and
gi ’s are strictly increasing function and t satisfies (10), then St is a con-
vex set and problem (SPt) is a convex maximization problem which can be
solved by the outer approximation method (see [7] for details). It is well-
known that the number of vertices of the polyhedral outer approximation
method increases exponentially as the number of cutting planes increases
(see [3, 18]). This makes the computation of the vertices for the convex-
ified subproblem (SPt) time-consuming as more and more cutting planes
are added to the outer approximate polyhedron. In order to avoid such
computational problem, we will calculate an upper bound of (SPt) instead
of searching for a high-accuracy solution. This can be done by stopping the
outer approximation after adding a given number of cutting planes.

Another computational issue is the estimation of a suitable parameter
in the variable transformation, for example, parameter p in (11). Let Sp

denote the convexified feasible region. In practical cases, the parameter is
determined empirically or by a self-adopted mechanism: choose an initial
value of p > 0, compute the vertices of the outer polyhedron of Sp, where
Sp is the transformed feasible region by using (11), if any vertex of the
outer polyhedron is inside Sp, then increase p and restart the outer approx-
imation process.

3. The Algorithm

The proposed method is a branch-and-bound method (see [8] for basic
concepts of branch-and-bound methods in global optimization). A sub-
problem of (P ) is formed by replacing X with certain subbox of X. Each
subproblem corresponds to a node in the search tree. Upper bounds of the
subproblems are estimated by using the convexification and outer approxi-
mation method discussed in Section 2.2. The partition formula (2) is used
to branch new subproblems. The algorithm starts by calculating an upper
bound on the initial box X = [l, u]. At the kth iteration, the algorithm
maintains a list of subboxes. The subbox with the maximum upper bound
is chosen from the list. Let [αk, βk] be such a subbox. The boundary point
xk on the line linking αk and βk is computed. A local search procedure
is applied to the subproblem on [αk, βk] and finds a local solution xk

loc in
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domain [αk, βk] starting from initial point xk. If xk
loc is better than the cur-

rent best feasible solution, then xk
loc is set to be the incumbent and f (xk

loc)

is the new lower bound. The box [αk, βk] is then partitioned into at most
2|Q| − 2 subboxes according to Lemma 1 and Remark 1. For each new
subbox, an upper bound is computed by the convexification and outer
approximation method. All the subboxes with upper bound equal to or less
than the lower bound are fathomed. The subboxes left are added to the
list. The process repeats until the list is empty.

Let dj be the solution of G(l1, . . . , lj−1, xj , lj+1, . . . , ln) = 0. By the
monotonicity of the problem, we can reset βj :=min(dj , βj ) to get a tighter
initial box.

A feasible solution x is said to be an η-optimal solution if x ∈ [α,β] with
‖β −α‖∞ � η and f (α)�f ∗ �f (β), where f ∗ is the global optimal value
of (P ). A feasible solution x is said to be an ε-optimal solution if f (x)�
f ∗ − ε.

The algorithm can be formally described as follows.

ALGORITHM 1

Step 0. (Initialization). Choose tolerance parameters ε > 0 and η > 0. If
l is infeasible then problem (P ) has no feasible solution. If u

is feasible then u is the optimal solution to (P ), stop. Other-
wise, set xbest = l, fbest = f (xbest), f 1

u = f (u), α1 = l, β1 = u,X1 =
{[α1, β1]}. Set k =1.

Step 1. (Box Selection). Select the subbox [αk, βk] ∈ Xk with maximum
upper bound f k

u . Let I k ={j ∈J |βk
j −αk

j �η} and Qk =J \I k. If
Qk =∅, stop, x =αk is an η-optimal solution.

Step 2. (Boundary Point). Set Xk :=Xk\[αk, βk]. Find the root λk of the
following equation:

G(λαk + (1−λ)βk)=0, λ∈ [0,1], (12)

where G is defined in (1). Set the boundary point xk = λkαk +
(1−λk)βk.

Step 3. (Local Search). Starting from xk, apply a local search procedure
to find a local solution xk

loc of the subproblem on [αk, βk]. If
f (xk

loc)>fbest, set xbest =xk
loc, fbest =f (xk

loc).
Step 4. (Partition). Partition the set 
k = [αk, βk]\ ([αk, xk)∪ (xk, βk]) into

2|Qk| − 2 new subboxes using formulation (2). Let Xk+1 be the
set of subboxes after adding the new subboxes to Xk. Removing
all subboxes [γ, δ] in Xk+1 with f (δ)�fbest.

Step 5. (Upper Bounding). For each subbox [α,β] in Xk+1, apply a con-
vexification transformation x = t (y) to the subproblem of (P ) on
[α,β], where t satisfies the conditions in Theorem 1. Solve the
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resulting problem (SPt) by the outer approximation method and
obtain an approximate solution ỹ. Set x̃ = t (ỹ). UB[α,β] =f (x̃) is
an upper bound of f on [α,β].

Step 6. (Fathoming). Remove all subboxes [α,β] in Xk+1 with UB[α,β] �
fbest. Let f k+1

u be the maximum upper bound of all the subboxes.
If f k+1

u −fbest <ε, then stop, xbest is an ε-optimal solution to (P ).
Otherwise, set k :=k +1, goto Step 1.

Remark 4. In Step 2, bisection method or Newton’s method can be used
to search for the root of equation (12). The numerical experiment in [13]
showed that bisection method performs better than Newton’s method.

Remark 5. Since additional computational efforts are needed to search
for a local solution of the subproblems, the local search procedure is not
necessarily applied to each subproblem during the branch-and-bound pro-
cess. A practical way is to use the boundary point xk and the local solu-
tion xk

loc alternatively as the new feasible solution. In Example 2 of Sec-
tion 4 and the computational experiment for linearly constrained problems
in Section 4, we will use the Reduced Gradient Method of Wolfe (see, for
example [2]) as the local search procedure in Step 3.

Remark 6. As we mentioned in Section 2.2, there is some trade-off
between the quality of the upper bound UB[α,β] in Step 5 and the amount
of computation and storage of the polyhedral vertices in the convexifi-
cation and outer approximation procedure. In our implementation of the
algorithm, at most 4n+ k cutting planes are generated at k-th iteration to
approximate the convexified feasible region St in problem (SPt) and the
maximum function value of the vertices is set to be UB[α,β].

THEOREM 2. Algorithm 1 either stops at an η-optimal solution in Step 1
or stops at an ε-optimal solution in Step 6 within a finite number of itera-
tions.

Proof. By the monotonicity of the problem and the box selection rule
in Step 1, it is clear that the algorithm either finds an η-optimal solu-
tion x = αk when it stops in Step 1 or an ε-optimal solution xbest when
it stops in Step 6. Next, we show that if the algorithm does not stops in
Step 6, then it will terminate in Step 1 within a finite number of itera-
tions with ‖βk − αk‖∞ � η satisfied. Suppose that the algorithm generates
an infinite subbox sequence {[αk, βk]}. Then, by the algorithm and the par-
tition formulation (2), there exists a subsequence {pk}⊂{1,2, . . . } such that
[αpk+1, βpk+1 ]⊂ [αpk , βpk ] for k =1,2, . . . and
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βpk+1 =βpk − (βpk

sk
−xpk

sk
)esk , (13)

αpk+1 =αpk + (x
pk

tk −α
pk

tk )etk , (14)

where sk, tk ∈ Qk ⊆ J and ej is the j th unit vector of R
n. Equations (13)

and (14) yield

βpk

sk
−xpk

sk
�‖βpk+1 −βpk‖→0, k →∞, (15)

x
pk

tk −α
pk

tk �‖αpk+1 −αpk‖→0, k →∞. (16)

Notice that xk =λkαk + (1−λk)βk for any k. It then follows from (15) and
(16) that

λpk (βpk

sk
−αpk

sk
)=βpk

sk
−xpk

sk
→0, k →∞,

(1−λpk )(β
pk

tk −α
pk

tk )=x
pk

tk −α
pk

tk →0, k →∞.

Thus

λpk (βpk

sk
−αpk

sk
)+ (1−λpk )(β

pk

tk −α
pk

tk )→0, k →∞,

which implies either β
pk
sk

−α
pk
sk

→0 or β
pk

tk −α
pk

tk →0. Without loss of gener-
ality, suppose that

βpk

sk
−αpk

sk
→0, k →∞. (17)

Since sk is taken from the finite set J , (17) implies that there exist a fixed
s ∈J and a subsequence {qk}⊂ {pk} such that β

qk
s −α

qk
s → 0, k →∞. Then,

βk
s −αk

s →0, k→∞. Hence there exists k0 such that βk
s −αk

s �η when k�k0.
Since s �∈Qk for k � k0, using the same arguments and the finiteness of J ,
we can prove βk

i −αk
i �η for all i ∈J . Therefore, ‖βk −αk‖∞ �η will be sat-

isfied when k is sufficiently large.

4. Illustrative Examples

In this section, we will demonstrate Algorithm 1 by two small examples.

EXAMPLE 1.

max f (x)= 4.5(1−0.40x1−1)(1−0.40x2−1)+0.2 exp(x1 +x2 −7)

s.t. g1(x)= 5x1x2 −4x1 −4.5x2 �32,

x ∈X = {x |2�x1 �6.2, 2�x2 �6}.
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It is clear that f and g1 are strictly increasing functions on X. The problem
has three local optimal solutions: x1

loc = (2.2692,6)T with f (x1
loc) = 3.7735,

x2
loc = (3.4528,3.5890)T with f (x2

loc)=3.857736 and x3
loc = (6.2,2.1434)T with

f (x3
loc)=3.6631. Figure 3 shows the feasible region of the example.

Take t to be the convexification transformation (11) with p =2. Set η=
ε = 10−4. The algorithm starts by computing an upper bound of f on
X via convexification and outer approximation. Figures 4 and 5 depict
the convexified feasible region and the outer approximation for the first
iteration. Figure 6 shows the partition process in the first three iterations
of the algorithm. The algorithm stops at an approximation optimal solu-
tion xbest = (3.4476,3.5948)T with f (xbest)=3.857732 after six iterations and
generating 95 vertices.

To see the effect of using convexification and partition method on
this example, let’s compare Algorithm 1 with the monotone optimization
method using polyblock approximation ([13]). Figure 7 illustrates the first
three iterations of the polyblock approximation for Example 1. Using the
same accuracy ε = 10−4, the method finds an ε-approximate global solu-
tion xbest = (3.4526,3.5890)T with f (xbest) = 3.857736 after 359 iterations
and generating 718 vertices.

1 2 3 4 5 6 7
1

2

3
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6

7

x1
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x3
loc

x2
loc

S

x
2

x
1

Figure 3. Multiple local solutions of Example 1.
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Figure 4. Convexified feasible region with p =1.
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Figure 5. Convexification and outer approximation.
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Figure 6. Partition process for Example 1.

EXAMPLE 2.

max f (x)= (x2
1 − (1/6)x3

2 +x1 +43x2)

s.t. g1(x)= 2x1 +8x2 �44,

g2(x)= 7x1 +4x2 �48,

x ∈X = {x |2�xi �6, i =1,2}.

The objective function of this example is nonconvex and increasing. Note
that the example is a DC program since f (x) is a difference of two con-
vex functions and g1 and g2 are linear. The problem has two local optimal
solution: x1

loc = (4.3333,4.4167)T with f (x1
loc) = 198.6685 and x2

loc = (2,5)T

with f (x2
loc)=200.1667.

Take p = 2 in the convexification transformation (11) and set η = ε =
10−3. At the first iteration, a boundary point x1 = (4.5413,4.0526)T is
calculated. Starting from x1, a local solution x1

loc = (4.3333,4.4167)T is
obtained by using the local search procedure. Set xbest = (4.3333,4.4167)T

and fbest =198.6685. Partition the initial domain into two new subboxes:

X1
1 = [(2,4.0526)T , (4.5413,5)T ],

X1
2 = [(4.5413,2)T , (5.7143,4.0526)T ].



BRANCH-AND-BOUND BASED METHOD 381

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Z0Z1

Z2Z3

Z4

Z6

Z5

x1

x2

x3

x
1

x
2

Figure 7. Polyblock approximation for Example 1.

The upper bounds on X1
1 and X1

2 are 200.8376 and 193.4519, respectively. The
subbox X1

2 is removed as the upper bound 193.4519 <fbest. Set X2 ={X1
1}.

At the second iteration, a boundary point x2 = (3.5212,4.6197)T is calcu-
lated. Starting from x2, a new local solution x2

loc = (2,5)T is obtained. Update
xbest = (2,5) and fbest =200.1667. Partition X1

1 into two new subboxes:

X2
1 = [(2,4.6197)T , (3.5212,5)T ],

X2
2 = [(3.5212,4.0526)T , (4.5414,4.6197)T ].

The upper bounds on X2
1 and X2

2 are 200.1667 and 200.1199, respectively.
Both subboxes X2

1 and X2
2 are removed because the upper bounds are less

than or equal to fbest. Therefore, X3 = ∅ and the algorithm stops at the
global optimal solution xbest = (2,5)T .

5. Computational Results

Algorithm 1 was programmed by Fortran 90 and run on a Pentium IV PC
(2 GHz and 256 Mb RAM) for three types of monotone optimization test
problems. The objective functions of the test problems are as follows.
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Problem 1. Polynomial functions

f (x)=
q∑

i=1

pi

∏

j∈Ni

x
αij

j ,

where q is an integer number, pi ∈ [0,1], Ni ⊂ {1, . . . , n} with 1 � |Ni | �
3, each element of Ni is randomly generated from {1, . . . , n}, and αij ’s
are randomly generated from {1,2,3}. In our testing, q is taken to
be n.

Problem 2. Quadratic functions f (x) = (1/2)xT Ax, where A = (aij )n×n

with aij randomly generated from [0,10].
Problem 3. Reliability functions of complex networks with n=5,7,8,12.

Details of the network structures and the expressions of the reliability func-
tions can be found in [1, 12].

Two types of constraint functions are considered in our testing.

– Linear function gi(x) = ∑n
j=1 bijxj , where bij ’s randomly generated

from [0,20].
– Quadratic function gi(x) = (1/2)xT Aix + cT

i x, i = 1, . . . ,m, where the
entries of Ai are randomly generated from [0,5] and the components
of ci are from [0,20].

For all the test problems, lj = 1, uj = 5, j = 1, . . . , n. The right-
hand side is set to be bi = gi(l) + r × (gi(u) − gi(l)), i = 1, . . . ,m, where
r = 0.6 for linear constraints and r = 0.2 for quadratic constraints. In
our implementation of the algorithm, the variable transformation (11) is
used in problem (SPt). The parameters p and q in (11) are initially
taken to be 1. If the outer approximation method identifies that a ver-
tex of the outer polyhedron is inside Sp, then the outer approxima-
tion method is restarted by setting p := p + 1. The boundary point xb

in Step 1 is calculated by the bisection method. The tolerance parame-
ters are set as η = ε = 0.01 for Problems 1 and 2 and η = ε = 10−5 for
Problem 3.

Numerical results for Problems 1–3 are summarized in Tables I–VI,
where average CPU seconds, average number of iterations and average
number of subboxes are obtained by running the algorithm for 20 test
problems. Comparing Tables I–VI, we see that the problems with general
quadratic constraints are much more difficult than those with linear con-
straints in terms of the average CPU time of the algorithm. This is mainly
because the polyhedral outer approximation to the transformed subprob-
lem (SPt) produces better upper bounds for problems with linear con-
straints than those with quadratic constraints.
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Table I. Numerical results for Problem 1 with linear constraints

n m Average CPU time (seconds) Average number Average number
of iterations of subboxes

5 1 0.06 2 11
7 1 1.2 3 17

10 1 39.2 3 21
5 5 0.2 3 16
7 5 1.3 2 16

10 5 136.2 4 36

Table II. Numerical results for Problem 1 with quadratic constraints

n m Average CPU time (seconds) Average number Average number
of iterations of subboxes

5 1 0.3 4 28
7 1 2.7 3 28

10 1 183.6 3 32
5 5 0.3 3 28
7 5 5.0 4 35

10 5 224.2 2 23

Table III. Numerical results for Problem 2 with linear constraints

n m Average CPU time (seconds) Average number Average number
of iterations of subboxes

5 1 0.09 1 13
7 1 20.8 9 107
5 5 0.8 5 45
7 5 102.4 22 247

Table IV. Numerical results for Problem 2 with quadratic constraints

n m Average CPU time (seconds) Average number Average number
of iterations of subboxes

5 1 1.3 8 64
7 1 548.5 61 713
5 5 1.9 10 80
7 5 3689.3 180 2128
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Table V. Numerical results for Problem 3 with linear constraints

n m Average CPU time (seconds) Average number Average number
of iterations of subboxes

5 1 0.023 1 9
7 1 0.4 3 27
8 1 3.3 5 57

12 1 52.3 5 60
5 5 0.04 2 12
7 5 0.7 2 21
8 5 31.6 42 504

12 5 210.5 3 50

Table VI. Numerical results Problem 3 with quadratic constraints

n m Average CPU time Average number Average number
(seconds) of iterations of subboxes

5 1 0.03 1 9
7 1 0.6 1 19
8 1 4.3 2 36

12 1 249.5 2 51
5 5 0.06 1 13
7 5 0.7 1 24
8 5 6.9 5 66

12 5 294.1 1 43

6. Conclusions

We have presented in this paper a new branch-and-bound algorithm for
monotone optimization problems. The domain is partitioned iteratively
into a union of subboxes that covers the boundary of the feasible region.
On each of the subboxes, an upper bounds of the objective function is
computed by a convexification and outer approximation procedure. Local
search is used to find an improved lower bound, thus speeding up the con-
vergence of the algorithm. Computational results for randomly generated
test problems have been reported to show the feasibility and efficiency of
the proposed algorithm.
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